3619

699. Steroids. Part XXII.* The Configuration of 14α -Digiprogenin.

By C. W. SHOPPEE and RUTH E. LACK.

The configuration at C-17 of (" γ ")-14 α -digiprogenin has been established; this digitenol is 3β,17β-dihydroxy-14α,17α-pregn-5-ene-11,15,20-trione.

THE structure of (" γ ")-14 α -digipronin [= Crystal C] (I; R = C₇H₁₂O₄), a D(+)-digitaloside isolated from the leaves of Digitalis purpurea by Satoh et al.¹ and by Tschesche et al.,² and of its aglycone the digitenol 14α -digiprogenin [= γ -digiprogenin] (I; R = H) have been established by Satoh^{3,4} except in regard to configuration at C-17. The 17-sidechain in 14 α -digiprogenin (I; R = H) and in 14 β -digiprogenin [= α -digiprogenin] (II; R = H) was assigned the β -configuration, and in consequence the tertiary 17-hydroxyl group given the α -orientation, by Satoh ⁴ simply on the ground of analogy to other natural steroids. We now show that 14α - and 14β -digiprogenin (I and II; R = H) belong to the 17β -hydroxy- 17α -pregnan-20-one series.

The conversion of 14α -digipronin into 14β -digipronin (I \longrightarrow II; $R = C_7 H_{12} O_4$) and of 14 α -digiprogenin into 14 β -digiprogenin (I \longrightarrow II; R = H) by 0.02N-potassium hydroxide at 20° , and the dehydration of either genin to the 14 β -16-en-15-one [= β -digiprogenin] [(I or II; R = H) \longrightarrow (III)] by N-hydrochloric acid in refluxing 50% ethanol,^{3,4} is closely

paralleled by the transformation of the tris-D(+)-digitoxoside deacetyl-14 α -digacetin to deacetyl-14 β -digacetinin (IV \longrightarrow V; $R^1 = C_{18}H_{30}O_9$, $R^2 = H$) and of deacetyl-14 α digacetigenin to deacetyl-14 β -digacetigenin (IV \rightarrow V; $R^1 = R^2 = H$) by 0.04N-potassium hydroxide at $20^{\circ,5,6}$ and the dehydration of the latter genin to the 14 β -16-en-15-one (VI) by 2n-hydrochloric acid in refluxing methanol.⁶

The identification by Satoh^{3,4} of a 20-methyl-20-carbonyl grouping attached to C-17 in a >C(OH)·COMe system, through the characteristic "O"-band 7 at 1360 and 1364 cm.⁻¹,

* Part XXI, preceding Paper.

¹ Satoh, Ishii, Oyama, and Okumura, J. Pharm. Soc. Japan, 1955, **75**, 1573; Satoh, Ishii, Oyama, Wada, and Okumura, Chem. and Pharm. Bull. (Japan), 1956, **4**, 284; 1957, **5**, 253.

² Tschesche, Lipp, and Grimmer, Annalen, 1957, 606, 160; Tschesche and Lipp, ibid., 1958, 615, 210.

- ³ Satoh, Chem. and Pharm. Bull. (Japan), 1960, 8, 270.
- ⁴ Satoh, Chem. and Pharm. Bull. (Japan), 1962, 10, 43.
 ⁵ Tschesche, Hammerschmidt, and Snatzke, Annalen, 1961, 642, 199.
- ⁶ Shoppee and Lack, preceding Paper.
 ⁷ Jones, R. N., and Cole, J. Amer. Chem. Soc., 1952, 74, 5648.

3620

respectively, in the infrared spectra of 14α - and 14β -digiprogenin, is supported by the n.m.r. spectrum of 14α -digiprogenin (I; R = H). The signal for the 20-methyl group appears as a sharp singlet for three protons at τ 7.66; this is in excellent agreement with the usual value (7.7) for 17α -hydroxypregnan-20-ones, and occurs at the same position (7.68) as in the spectra of 14α -digacetigenin (IV; R¹ = H, R² = Ac) and its 3-acetate.⁶

The optical rotatory dispersion curve for 14α -digiprogenin (I; R = H) closely resembles those for 14α -digacetigenin⁶ (IV; R¹ = H, R² = Ac) and deacetyl- 14α -digacetigenin⁶ (IV; R¹ = R² = H), and suggests that these compounds are 17β -hydroxy- 17α -pregnan-20-ones. The small molecular amplitude observed ($10^{-2}a - 39$) is in better agreement with the calculated value⁸ for an 11,15,20-trioxo- 14α , 17α -structure ($10^{-2}a + 24$) * than with an 11,15,20-trioxo- 14α , 17β -structure (calc. $10^{-2}a + 297$).*

The foregoing evidence indicates that 14α -digiprogenin is 3β , 17β -dihydroxy- 14α , 17α -pregn-5-ene-11, 15, 20-trione (I; R = H).

EXPERIMENTAL

The nuclear magnetic resonance spectrum was determined on a Varian D.P. 60 instrument at 60 Mc./sec with deuteriochloroform as solvent and tetramethylsilane as internal reference; the optical rotatory dispersion curve was measured using a Rudolph polarimeter.

(" γ ")-14 α -Digiprogenin (I; R = H).—The n.m.r. spectrum showed three signals, each corresponding to three protons and assigned as follows: 13-methyl at τ 8·91, 10-methyl at 8·89, and 20-methyl at 7·66. The spectrum was also determined in pyridine, and signals were observed for the 13-methyl at 8·78, the 10-methyl at 8·72, and the 20-methyl at 7·72. Optical rotatory dispersion in MeOH: [M] -1700 (336 m μ , trough), +2200 (305 m μ , shortest wavelength measured); 10⁻² α -39. The 3-acetate gave signals at τ 8·89 (13-Me), 8·89 (10-Me), 7·96 (3-COMe), and 7·66 (20-Me).

(" α ")-14 β -Digiprogenin (II; R = H).—This was even more insoluble than the 14 α -epimer. The n.m.r. spectrum showed two signals, each corresponding to 3 protons, at τ 8.83 (10-Me) and 8.65 (13-Me). The 3-acetate gave signals at τ 8.83 (10-Me), 8.66 (13-Me), 7.96 (3-COMe), and 7.73 (20-Me).

We thank Dr. Daisuke Satoh, Shionogi Research Laboratories, Osaka, Japan, for the gift of a specimen of 14α -digiprogenin, and Professor G. M. Badger, University of Adelaide, for the optical rotatory dispersion curve.

DEPARTMENT OF ORGANIC CHEMISTRY, THE UNIVERSITY OF SYDNEY, AUSTRALIA.

[Received, November 5th, 1963.]

* The standard value for the rotatory dispersion contribution of an 11-carbonyl group in saturated 5α , 14α - and 5β , 14α -steroids is $10^{-2}a + 12$ but in Δ^{5} - 14α -steroids rises to $10^{-2}a + 50.9$

⁸ Djerassi, "Optical Rotatory Dispersion," McGraw-Hill, London, 1960, pp. 71, 72.

⁹ Shoppee and Lack, J., 1962, 3624.